

Cumulocity IoT
Event Language guide

IMPORTANT

The functionality described in this guide is deprecated. All new
Cumulocity IoT installations will use the Apama CEP engine.

Software AG has terminated support for using CEL (Esper) in
Cumulocity IoT on 31 Dec 2020 following its deprecation in 2018.

For further information on using Apama's Event Processing Language in
Cumulocity IoT refer to the Streaming Analytics guide.

For details on migration, refer to Migrating from CEL (Esper) to Apama in the
Streaming Analytics guide.

October 2021

https://cumulocity.com/guides/apama/overview-analytics/
https://cumulocity.com/guides/apama/overview-analytics/#migrate-from-esper

This content applies to Cumulocity IoT 10.11.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Copyright © 2012-2021 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of
Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors.
Other company and product names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms,
additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party
Products". For certain specific third-party license restrictions, please refer to section E of the Legal Notices
available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark
Notices of Software AG Products". These documents are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Page 2 of 67

Cumulocity IoT Event Language

3

6
6
6
6
7
7
8
8
9
9

10
10
10
11

12
12
12
13
14
14
15
15
16
16
17
17
18
19
19
20
21
21
21
22
22
23
24
24
24
25
25

26
26

Table of Contents

Table of Contents

Introduction
Overview

CEP application variants
Using Cumulocity Event Language (CEL)

How can I create derived data from CEL?
How can I control devices from CEL?
How can I query data from CEL?

Event streams
Predefined streams
Creating events in a stream
Listening to events in a stream

Conditions
Example
Troubleshooting

Data model
Input streams

General structure
ManagedObject
Event
Measurement
Operation
Alarm
Response received

Output streams
General structure
ManagedObjects
Events
Measurements
Operations
Alarms

Special streams
SendMail
SendSms
SendPush
SendRequest
SendExport

Additional data models
ID
OperationStatus
Severity
AlarmStatus

Functions
Java functions

Table of Contents Page 3 of 67

Cumulocity IoT Event Language

27
29
29
30
30
30
31
31

33
33
35
35
36
36
37
38
39
40
40

42
42
42
42
43
43

44
44
45
45
48
49

53
53
53
53
54
54
55
55
56
57
57
58
58

61

Database functions
Utility functions

access fragments
cast
current_timestamp
inMaintenanceMode
replaceAllPlaceholders
toNumberSetParameter

Advanced use cases
Custom fragments
Advanced trigger

Pattern
Timer
Outputs

Event windows
Creating own streams
Creating own functions
Variables
Contexts

Best practises and troubleshooting
CEP statements and Esper scripts
Naming statements
Using device contexts
Splitting modules
Number formats

Examples
Calculating an hourly median of measurements
Creating alarm if the operation was not executed
Creating alarms from bit measurements
Consumption measurements
Using Zementis analytic models

Study: Circular geofence alarms
Prerequisites

Goal
Data model
Calculation

Step 1: Filtering the input
Step 2: Collecting necessary data
Step 3: Checking if the device supports c8y_Geofence
Step 4: Creating the trigger
Step 5: Creating the alarm
Step 6: Clearing the alarm
Step 7: Creating a device context
Putting everything together

API reference: Real-time statements

Table of Contents Page 4 of 67

Cumulocity IoT Event Language

61
61
61
61
62
62
62
63
64
64
64
65
65
65
66
66
67

Overview
Module API

CepApi [application/vnd.com.nsn.cumulocity.cepApi+json]
GET the CepApi resource

Module collection
ModuleCollection [application/vnd.com.nsn.cumulocity.cepModuleCollection+json]
GET a module collection
POST - Create a new Module with statements

Module
Module [application/vnd.com.nsn.cumulocity.cepModule+json]
GET Module
GET Module file with statements
Update Module
Update module file - Modify a Module with statements
DELETE a module

Notifications
The subscription channel name format

Table of Contents Page 5 of 67

Cumulocity IoT Event Language

Introduction

Overview

Using the Cumulocity IoT real-time event processing, you can add your own logic to your IoT solution. This includes data
analytics logic but it is not limited to it. To define new analytics, you can use the Cumulocity Event Language. The
language allows analyzing incoming data. It is using a powerful pattern and time window based query language. You
can create, update and delete your data in real-time.

Typical real-time analytics use cases include:

Remote control: Turn a device off if it’s temperature rises over 40 degrees.
Validation: Discard negative meter readings or meter readings that are lower than the previous.
Derived data: Calculate the volume of sales transactions per vending machine per day.
Aggregation: Sum up the sales of vending machines for a customer per day.
Notifications: Send me an email if there’s a power outage in one of my machines.
Compression: Store location updates of all cars only once every five minutes (but still send real-time data for the
car that I am looking at to the user interface).

In the following sections, we describe the basics for understanding how the Cumulocity Event Language works and how
you can create your own analytics or other server-side business logic and automation.

CEP application variants

In Cumulocity IoT, there are two deployment scenarios for using CEP rules:

MULTI_TENANT: This scope provides access to a shared instance of CEP container. All subscribed tenants share
the resources of the same CEP instance. It is available if you are subscribed to the “Cep” application, a built-in
application which comes with Cumulocity IoT.

PER_TENANT: Each subscribed tenant has at least one own instance of CEP container. The container is isolated
from other tenants, hence high CPU load or memory issues on other containers do not have any impact on the
own one. This feature is available with the application “Cep-small” which is an optional service. Also, you need to
be subscribed to the application" Feature-cep-custom-rules" to be able to upload your own CEP rules.

For details on application subscription refer to Administration > Managing tenants > Subscribing to applications in the
User guide.

Using Cumulocity Event Language (CEL)

Introduction Page 6 of 67

Cumulocity IoT Event Language

https://cumulocity.com/guides/users-guide/enterprise-tenant#subscribe

Cumulocity Event Language has a syntax similar to SQL language. In SQL a statement is run against a logically fixed
database, produces a result and completes the task. In Cumulocity IoT, a statement is continuously running against a
stream of input data (input events) and is continuously calculating its output (output events).

As an example, the following statement continuously retrieves new temperature sensor readings ranging above a
particular temperature:

select *
from MeasurementCreated e
where getNumber(e, "c8y_TemperatureMeasurement.T.value") > 100

Here, MeasurementCreated is a stream containing an event for each measurement that is created in the system.
Selecting a subset of these events is done using where, similar to SQL. getNumber() is a function to read out a numeric
value from an event. In this example, “e” is the “MeasurementCreated” event and the property is
“c8y_TemperatureMeasurement”. “T.value”, is a value in degrees Celsius of a temperature sensor (see the sensor
library).

How can I create derived data from CEL?

There are special streams provided by the system to perform predefined operations (such as data storage or sending
data by email). One stream is CreateAlarm, which can be used to store an alarm in Cumulocity IoT. Assume that an
alarm should be generated immediately if the temperature of a sensor exceeds a defined value. This is done with the
following statement:

insert into CreateAlarm
select
 e.measurement.time as time,
 e.measurement.source.value as source,
 "c8y_TemperatureAlert" as type,
 "Temperature too high" as text,
 "ACTIVE" as status,
 "CRITICAL" as severity
from MeasurementCreated e
where getNumber(e, "c8y_TemperatureMeasurement.T.value") > 100

Technically, this statement produces a new “AlarmCreated” event each time a temperature sensor reads more than 100
degrees Celsius and puts it into the “CreateAlarm” output stream. The property names in the selected clause have to
match the properties of “AlarmCreated” (see the Cumulocity Event Language reference).

How can I control devices from CEL?

Remote control in CEL is just another type of derived data. Remote operations are targeted to a specific device. The
following example illustrates switching a relay based on temperature readings:

insert into CreateOperation
select
"PENDING" as status,
<<heating ID>> as deviceId,
{
"c8y_Relay.relayState", "CLOSED"
} as fragments
from MeasurementCreated e
where getNumber(e, "c8y_TemperatureMeasurement.T.value") > 100

heating ID is a placeholder for the ID of the heating that should be triggered.

Introduction Page 7 of 67

Cumulocity IoT Event Language

https://cumulocity.com/api/10.11.0/#section/Sensor-library
http://localhost:1313/guides/real-time-statements

fragments defines the nested content of the operation a “c8y\Relay” that is “CLOSED”.

The syntax of the fragments part is a list of pairs of property names and values surrounded by curly braces: {?key1?, ?
value1?, ?key2?, ?value2?, …}.

How can I query data from CEL?

It may be required to query information from the Cumulocity IoT database as part of the ongoing event processing. This
is supported by a set of querying methods. Here is an example that shows how to summarize total sales for vending
machines every hour. The sales report data created after a purchase is retrieved from the Cumulocity IoT database.

create window SalesReport.win:time_batch(1 hour)
(
 event com.cumulocity.model.event.Event,
 customer com.cumulocity.model.ManagedObject
)

insert into SalesReport
select
 e.event as event,
 findOneManagedObjectParent(e.event.source.value) as customer
from EventCreated as e

insert into CreateMeasurement
select
 "total_cust_trx",
 "customer_trx_counter",
 {
 "total", count(*),
 "customer_id", sales_report.customer.id.value
 }
from SalesReport as sales_report
group by sales_report.customer.id.value

Above we create a batch window first, which keeps data for one hour in order to calculate a total in this time frame. We
store the prepared data into this window: Incoming events along with the parent managed object of the event source.
This corresponds to the data model of our vending application: Sales reports are represented as events in Cumulocity
IoT with a vending machine as source. Customers are represented as parent managed objects of vending machines.

The collection of sales reports is calculated through “insert into CreateMeasurement…” using a SQL-like syntax and is
stored as a measurement. The difference to SQL is: In SQL, you calculate a result over a fixed, current content of a
database. In Cumulocity Event Language, statements run endlessly and the process time has to be limited by the time
window.

Event streams

In the Cumulocity Event Language data flows in streams. You can create events in streams and listen to events created
in streams.

Introduction Page 8 of 67

Cumulocity IoT Event Language

Predefined streams

There are some predefined streams to interact with several Cumulocity IoT APIs. For each input stream, Cumulocity IoT
will automatically create a new event when the respective API call was made. If a measurement was created via REST
API there will be a new event in the MeasurementCreated stream. For interacting with the Cumulocity IoT backend you
can create an event on the respective output stream and Cumulocity IoT will automatically execute either the database
query or create the API calls necessary for sending mails, sms, or similar. To create a new alarm in the database you
can create a new event in the CreateAlarm stream.

API Input streams
Output
streams Description

Inventory ManagedObject
Created
ManagedObject
Updated
ManagedObject
Deleted

CreateManage
dObject
UpdateManage
dObject
DeleteManage
dObject

This group of events represents creation, modification or deletion
of a single ManagedObject.

Events EventCreated
EventUpdated
EventDeleted

CreateEvent
UpdateEvent
DeleteEvent

This group of events represents creation or deletion of a single
Event.

Measure
ments

MeasurementCr
eated
MeasurementD
eleted

CreateMeasure
ment
DeleteMeasure
ment

This group of events represents creation or deletion of a single
Measurement.

Device
control

OperationCreat
ed
OperationUpdat
ed

CreateOperatio
n
UpdateOperati
on

This group of events represents creation or modification of a
single Operation.

Alarms AlarmCreated
AlarmUpdated

CreateAlarm
UpdateAlarm

This group of events represents creation or modification of a
single Alarm.

Emails (not used) SendEmail
SendDashboar
d

This group of events represents sending of an email.

SMS (not used) SendSms This group of events represents sending of a SMS.

HTTP ResponseRecei
ved

SendReqeust This group of events represents sending http requests to external
services.

Export (not used) SendExport This group of events represents generating emails with exported
data.

Look at the data model to see how the events for each stream are structured.

Creating events in a stream

Creating an event is done by the keywords insert into and select . First, you need to specify the “insert into”
followed by the stream name for which stream you want to create an event. After that you can use the “select” clause to

Introduction Page 9 of 67

Cumulocity IoT Event Language

specify the parameters of the event. A parameter gets specified by the following syntax: value as parameter . You
can specify multiple parameters by separating them by commas. The order of the parameters does not matter. Please
notice that streams can have mandatory parameters you need to specify in the “select” clause.

Listening to events in a stream

The most common way to trigger the creation of an event in a stream is when something happens on another stream.
Therefore you can listen to events from other streams. This is done by the keyword from followed by the name of the
stream and (optional) followed by a variable name to reference the event in your statement at a later point.

Conditions

Adding conditions can be done with the keyword where to not trigger your event creation for every incoming event but
only if these conditions are met. The where keyword is followed by an expression that results either in true or false.
You can also have multiple expressions connected with and or or .

Example

As an example, we create a statement. It should listen to a stream and create a new event in another stream whenever
the specified condition applies. As example we want to create an alarm for each temperature measurement that is
created.

1. To create an alarm we need to insert into the stream CreateAlarm .
2. We need to specify all parameters for the event in the select clause.
3. We want the alarm to be created when an event from the stream MeasurementCreated is received.
4. We want the alarm only be created under certain conditions of the event from the MeasurementCreated stream

which we specify in the where clause.

The resulting statement can look like this:

insert into CreateAlarm
select
 measurementEvent.measurement.time as time,
 measurementEvent.measurement.source.value as source,
 "c8y_TemperatureAlarm" as type,
 "Temperature measurement was created" as text,
 "ACTIVE" as status,
 "CRITICAL" as severity
from MeasurementCreated measurementEvent
where measurementEvent.measurement.type = "c8y_TemperatureMeasurement";

Introduction Page 10 of 67

Cumulocity IoT Event Language

Troubleshooting

Error message

Real-time event processing is currently overloaded and may stop processing your events.
Please contact [product support](https://cumulocity.com/guides/welcome/contacting-support/).

Description

The CEP queue for the respective tenant is full. This might for example happen when more events are created than
currently can be handled.

In this case, an alarm will be raised. To avoid losing incoming new events, the oldest events will be deleted, i.e. an
incoming new event triggers the deletion of the queue head event.

Introduction Page 11 of 67

Cumulocity IoT Event Language

Data model

Input streams

General structure

All input streams share the same base structure.

Parameter
Data
type Description

_type Strin
g

The type of the event. See the table below which value types can be used for different
streams.

_mode Strin
g

The processing mode in which the data was sent to Cumulocity IoT. See Processing mode in
the Cumulocity IoT OpenAPI Specification.

_origin Strin
g

The origin of the event. If the data was created by a cep rule the origin will be “cep”.

payload Obje
ct

The actual data contained in the event

Types:

Stream Type

ManagedObjectCreated MANAGED_OBJECT_CREATE

ManagedObjectUpdated MANAGED_OBJECT_UPDATE

ManagedObjectDeleted MANAGED_OBJECT_DELETE

EventCreated EVENT_CREATE

EventUpdated EVENT_UPDATED

EventDeleted EVENT_DELETE

MeasurementCreated MEASUREMENT_CREATE

MeasurementDeleted MEASUREMENT_DELETE

Data model Page 12 of 67

Cumulocity IoT Event Language

https://cumulocity.com/api/10.11.0/#section/REST-implementation/HTTP-usage

OperationCreated OPERATION_CREATE

OperationUpdated OPERATION_UPDATE

AlarmCreated ALARM_CREATE

AlarmUpdated ALARM_UPDATE

ResponseReceived REQUEST_RESULT

Stream Type

For simpler access you can receive the payload directly in the data type of the respective stream by accessing it via an
API specific parameter:

API Parameter Data type

Inventory managedObject ManagedObject

Events event Event

Measurements measurement Measurement

Device control operation Operation

Alarms alarm Alarm

ManagedObject

class: com.cumulocity.model.ManagedObject

Parameter Data type Description

id ID ID of the ManagedObject

type String The type of the ManagedObject

name String The name of the ManagedObject

lastUpdated Date The time when the ManagedObject was last updated

owner String The owner of the ManagedObject

childAssets Object[] An array of the IDs of all child assets

childDevices Object[] An array of the IDs of all child devices

assetParents Object[] An array of the IDs of all parent assets

deviceParents Object[] An array of the IDs of all child devices

The Object[] for the references to the parents and children contains only IDs. You can use the cast function e.g.
cast(event.managedObject.childAssets[0], com.cumulocity.model.ID) .

Data model Page 13 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#managedobject
http://localhost:1313/guides/event-language/data-model#event
http://localhost:1313/guides/event-language/data-model#measurement
http://localhost:1313/guides/event-language/data-model#operation
http://localhost:1313/guides/event-language/data-model#alarm
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id

Example:

select
 event.managedObject.id,
 event.managedObject.type,
 event.managedObject.name,
 event.managedObject.lastUpdated,
 event.managedObject.owner,
 event.managedObject.childAssets,
 event.managedObject.assetParents,
 event.managedObject.deviceParents,
 event.managedObject.childDevices
from ManagedObjectCreated event;

Event

class: com.cumulocity.model.event.Event

Parameter Data type Description

id ID The ID of the Event

creationTime Date The time when the Event was created in the database

type String The type of the Event

text String The text of the Event

time Date The time when the Event was created (as sent by device)

source ID The ID of the device which created the Event

Example:

select
 event.event.id,
 event.event.creationTime,
 event.event.type,
 event.event.text,
 event.event.time,
 event.event.source
from EventCreated event;

Measurement

class: com.cumulocity.model.measurement.Measurement

Parameter Data type Description

id ID The ID of the Measurement

type String The type of the Measurement

Data model Page 14 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id

time Date The time when the Measurement was created (as sent by device)

source ID The ID of the device which created the Measurement

Parameter Data type Description

Example:

select
 event.measurement.id,
 event.measurement.type,
 event.measurement.time,
 event.measurement.source
from MeasurementCreated event;

Operation

class: com.cumulocity.model.operation.Operation

Parameter Data type Description

id ID The ID of the Operation

creationTime Date The time when the Operation was created in the database

status OperationStatus The current status of the Operation

deviceId ID The ID of the device which should execute the Operation

Example:

select
 event.operation.id,
 event.operation.creationTime,
 event.operation.status,
 event.operation.deviceId
from OperationCreated event;

Alarm

class: com.cumulocity.model.event.Alarm

Parameter Data type Description

id ID The ID of the Alarm

creationTime Date The time when the Alarm was created in the database

type String The type of the Alarm

count long The number of times the alarm was reported while active

Data model Page 15 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#operationstatus
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id

severity Severity The severity of the Alarm

status AlarmStatus The status of the Alarm

text String The text of the Event

time Date The time when the Event was created (as sent by device)

source ID The ID of the device which created the Alarm

Parameter Data type Description

Example:

select
 event.alarm.id,
 event.alarm.creationTime,
 event.alarm.type,
 event.alarm.count,
 event.alarm.severity,
 event.alarm.status,
 event.alarm.text,
 event.alarm.time,
 event.alarm.source
from AlarmCreated event;

Response received

Parameter Data type Description

status Integer Http response status

body String Http response body

creationTime Date The time when the response was created

source Object Source set in SendRequest output stream

Example:

select
 event.status,
 event.body,
 event.creationTime,
 getString(event.source, 'id.value') as source
from ResponseReceived event;

Output streams

Data model Page 16 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#severity
http://localhost:1313/guides/event-language/data-model#alarmstatus
http://localhost:1313/guides/event-language/data-model#id

General structure

Output streams contain the possibility to CREATE, UPDATE and DELETE data in Cumulocity IoT. When updating or
deleting data it is necessary to provide the ID of the object that will be updated or deleted. When creating data,
Cumulocity IoT will generate an ID if not set in the event processing. The creation of data also requires certain
parameters to be set (the same as at our REST APIs). In addition to the predefined parameters listed, it is possible to
add any custom fragment to the data. Please take a look at the custom fragments section for adding custom
fragments.

Note: Creating your own ID will only work on ManagedObjects.

ManagedObjects

Available outputs

CreateManagedObject

UpdateManagedObject

DeleteManagedObject

Parameter Data type Description Mandatory

id ID or String ID of the ManagedObject UPDATE and
DELETE

type String The type of the ManagedObject No

name String The name of the ManagedObject No

owner String The owner of the ManagedObject. If not set data created from event
processing will have the owner “cep”

No

childAsset
s

Set<String>
or Set<ID>

A set of IDs of all child assets No

childDevic
es

Set<String>
or Set<ID>

A set of IDs of all child devices No

Example:

Data model Page 17 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id

insert into CreateManagedObject
select
 "myManagedObject" as name,
 "myType" as type
from EventCreated event;

insert into UpdateManagedObject
select
 "12345" as id,
 "myNewManagedObject" as name
from EventCreated event;

insert into DeleteManagedObject
select
 "12345" as id
from EventCreated event;

Events

Available outputs

CreateEvent

UpdateEvent

DeleteEvent

Parameter Data type Description Mandatory

id ID or String The ID of the Event DELETE

type String The type of the Event CREATE

text String The text of the Event CREATE

time Date The time when the Event was created (as sent by device) CREATE

source ID or String The ID of the device which created the Event CREATE

Example:

insert into CreateEvent
select
 "copiedEventType" as type,
 "This event was copied" as text,
 event.event.time as time,
 event.event.source as source
from EventCreated event;

insert into DeleteEvent
select
 "12345" as id
from EventCreated event;

Data model Page 18 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id

Measurements

Available outputs

CreateMeasurement

DeleteMeasurement

Parameter Data type Description Mandatory

id ID or String The ID of the Measurement DELETE

type String The type of the Measurement CREATE

time Date The time when the Measurement was created (as sent by device) CREATE

source ID or String The ID of the device which created the Measurement CREATE

Example:

insert into CreateMeasurement
select
 "c8y_TemperatureMeasurement" as type,
 event.event.time as time,
 event.event.source as source,
 {
 "c8y_TemperatureMeasurement.T.value", 5
 } as fragments
from EventCreated event;

insert into DeleteMeasurement
select
 "12345" as id
from EventCreated event;

Operations

Available outputs

CreateOperation

UpdateOperation

Parameter Data type Description Mandatory

id ID or String The ID of the Operation UPDATE

status OperationStatus or String The current status of the Operation CREATE

deviceId ID or String The ID of the device which should execute the Operation CREATE

Example:

Data model Page 19 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#operationstatus
http://localhost:1313/guides/event-language/data-model#id

insert into CreateOperation
select
 OperationStatus.PENDING as status,
 event.event.source as deviceId,
 {
 "c8y_Restart", {}
 } as fragments
from EventCreated event;

insert into UpdateOperation
select
 "12345" as id,
 OperationStatus.EXECUTING as status
from EventCreated event;

Alarms

Available outputs

CreateAlarm

UpdateAlarm

Parameter Data type Description Mandatory

id ID or String The ID of the Alarm UPDATE

type String The type of the Alarm CREATE

severity Severity or String The severity of the Alarm CREATE

status AlarmStatus or String The status of the Alarm CREATE

text String The text of the Event CREATE

time Date The time when the Event was created (as sent by device) CREATE

source ID or String The ID of the device which created the Alarm CREATE

Example:

insert into CreateAlarm
select
 "c8y_HighTemperatureAlarm" as type,
 event.event.time as time,
 event.event.source as source,
 CumulocitySeverities.WARNING as severity,
 CumulocityAlarmStatuses.ACTIVE as status,
 "The device has high temperature" as text
from EventCreated event;

insert into UpdateAlarmn
select
 "12345" as id,
 CumulocityAlarmStatuses.ACKNOWLEDGED as status
from EventCreated event;

Data model Page 20 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id
http://localhost:1313/guides/event-language/data-model#severity
http://localhost:1313/guides/event-language/data-model#alarmstatus
http://localhost:1313/guides/event-language/data-model#id

Special streams

The streams mentioned in this section do not interact with the Cumulocity IoT database but will create calls to external
services.

SendMail

Parameter Data type Description Mandatory

receiver String The mail address of the receiver yes

cc String The mail address of the cc no

bcc String The mail address of the bcc no

replyTo String The mail address which should receive replies to the sent mail yes

subject String The subject line of the mail yes

text String The body of the mail yes

It is possible to have more than one mail address in the parameters receiver,cc and bcc. Therefore create a string that
contains all mail addresses separated by commas. “receiver1@mail.com,receiver2@mail.com”.

Example:

insert into SendEmail
select
 "receiver1@cumulocity.com,receiver2@cumulocity.com" as receiver,
 "cc@cumulocity.com" as cc,
 "bcc@cumulocity.com" as bcc,
 "reply@cumulocity.com" as replyTo,
 "Example mail" as subject,
 "This mail was sent to test the SendEmail stream in Cumulocity" as text
from AlarmCreated;

SendSms

Parameter
Data
type Description Mandatory

receiver String The phone number of the receiver yes

text String The body of the sms. Max. 160 characters yes

Data model Page 21 of 67

Cumulocity IoT Event Language

mailto:receiver1@mail.com

deviceId String The ID of the device generating the sms. A log event will be created for the
device

no

Parameter
Data
type Description Mandatory

It is possible to have more than one phone number in the parameter receiver. Therefore create a string that contains all
phone numbers separated by commas e.g. “+49123456789,+49987654321”. Although it is technically not required by
Cumulocity IoT to have the country code we recommend you to use it because the sms gateway might require it. You
can use the notation like e.g. “0049” or “+49” (for Germany).

Note:

This feature will only work if your tenant is linked to a sms provider. For more information please contact product
support.

Example:

insert into SendSms
select
 "+49123456789" as receiver,
 "This sms was sent to test the SendSms stream in Cumulocity" as text,
 "12345" as deviceId
from AlarmCreated;

SendPush

This stream enables the possibility to send push notifications from Cumulocity IoT via the Telekom push service to
mobile applications.

Parameter Data type Description Mandatory

type String Push Provider Type. Currently only TELEKOM is possible. yes

message String The body of the push message. yes

deviceId String The ID of the device generating the push message. yes

Note:

This feature will only work if your tenant is linked to a push provider. For more information please contact product
support.

Example:

insert into SendPush
select
"TELEKOM" as type,
"sample push message" as message,
a.alarm.source.value as deviceId
from AlarmCreated a;

SendRequest

Data model Page 22 of 67

Cumulocity IoT Event Language

https://cumulocity.com/guides/welcome/contacting-support/
https://cumulocity.com/guides/welcome/contacting-support/

This stream enables the possibility to send HTTP requests from Cumulocity IoT to external systems.

Parameter Data type Description Mandatory

url String Url of external system yes

method String Method of HTTP request yes

body String Body of HTTP reqeust no

authorizati
on

String HTTP Authorization header no

contentTyp
e

String HTTP Content-Type header no

headers Map<String,Strin
g>

HTTP headers no

source Object Represents object which will be passed to ResponseReceived input
stream

no

Example:

insert into SendRequest
select
 'post' as method,
 'http://some.external.service.com' as url,
 'application/json' as contentType,
 toJSON(m.payload) as body,
 m.payload as source
from MeasurementCreated m

SendExport

This stream enables the possibility to generate export.

Parameter
Data
type Description Mandatory

enabledSo
urces

List Export configuration ids true

subject Strin
g

Subject of email false

text Strin
g

Text of email. Available placeholders: {host}, {binaryId}. Default message is: “File
with exported data can be downloaded from
{host}/inventory/binaries/{binaryId}”

false

receiver Strin
g

Receiver of email false

Example:

Data model Page 23 of 67

Cumulocity IoT Event Language

insert into SendExport
select
 'configurationExportId' as enabledSources,
 'subject' as subject,
 'text' as text,
 'receiver@example.com' as receiver
from
 pattern [every timer:at(5, *, *, *, *)]

Additional data models

ID

class: com.cumulocity.model.ID

Parameter Data type Description

value String The actual ID value

type String The type of the ID

name String The name of the device (only if the ID refers to a device like in measurement.source)

Example:

select
 event.measurement.source.value,
 event.measurement.source.type,
 event.measurement.source.name
from MeasurementCreated event;

OperationStatus

class: com.cumulocity.model.operation.OperationStatus

OperationStatus is an enum offering the following values: PENDING , SUCCESSFUL , FAILED , EXECUTING

Example:

insert into UpdateOperation
select
 event.operation.id.value as id,
 OperationStatus.FAILED as status
from OperationCreated event;

Data model Page 24 of 67

Cumulocity IoT Event Language

Severity

class: com.cumulocity.model.event.Severity

Severity is the interface for the enum implementation CumulocitySeverities. CumulocitySeverities offers the following
values: CRITICAL , MAJOR , MINOR , WARNING

Example:

insert into UpdateAlarm
select
 event.alarm.id.value as id,
 CumulocitySeverities.MAJOR as severity
from AlarmCreated event;

AlarmStatus

class: com.cumulocity.model.event.AlarmStatus

AlarmStatus is the interface for the enum implementation CumulocityAlarmStatuses. CumulocityAlarmStatuses offers
the following values: ACTIVE , ACKNOWLEDGED , CLEARED

Example:

insert into UpdateAlarm
select
 event.alarm.id.value as id,
 CumulocityAlarmStatuses.ACKNOWLEDGED as status
from AlarmCreated event;

Data model Page 25 of 67

Cumulocity IoT Event Language

Functions

With the Cumulocity Event Language it is possible to utilize functions. This section will cover the
already built-in functions ready to use.

For guidance on how to write your own functions please check Creating own functions.

Java functions

Every module automatically imports the following libraries:

java.lang.*
java.math.*
java.text.*
java.util.*

You can use any of the functions located in those libraries.

Examples:

Using java.util.Random

create variable Random generator = new Random();

insert into CreateMeasurement
select
 "12345" as source,
 "c8y_TemperatureMeasurement" as type,
 current_timestamp().toDate() as time,
 {
 "c8y_TemperatureMeasurement.T1.value", generator.nextInt(12) + 18,
 "c8y_TemperatureMeasurement.T1.unit", "C",
 "c8y_TemperatureMeasurement.T2.value", generator.nextInt(12) + 18,
 "c8y_TemperatureMeasurement.T2.unit", "C",
 "c8y_TemperatureMeasurement.T3.value", generator.nextInt(12) + 18,
 "c8y_TemperatureMeasurement.T3.unit", "C",
 "c8y_TemperatureMeasurement.T4.value", generator.nextInt(12) + 18,
 "c8y_TemperatureMeasurement.T4.unit", "C",
 "c8y_TemperatureMeasurement.T5.value", generator.nextInt(12) + 18,
 "c8y_TemperatureMeasurement.T5.unit", "C"
 } as fragments
from pattern[every timer:at(*, *, *, *, *, */30)];

Using java.math.BigDecimal

Functions Page 26 of 67

Cumulocity IoT Event Language

select
 getNumber(m, "c8y_TemperatureMeasurement.T.value").divide(new
BigDecimal(3),2,RoundingMode.HALF_UP)
from MeasurementCreated m;

Database functions

To interact with your historical data you can use one of the following functions to directly query the database.

Most functions are available in several variants:

findOne…(…): The function expects exactly one object as query result and fails otherwise.
findFirst…(…): The function returns the first object in the query result or “null”, if the result is empty.
findAll…(…): The function returns all objects in the query result.

Here is the full list of available functions. Replace the ellipses ("…") with “findOne”, “findFirst” or “findAll”.

Function name (with variants)
Return
type Alternative argument lists

findManagedObjectById Managed
Object

id*:String*
id*:GId*

findFirstManagedObjectParent
findOneManagedObjectParent

Managed
Object

managedObjectId*:String*
managedObjectId*:GId*

…ManagedObjectByFragmentType List fragmentType*:String*

…ManagedObjectByType List type*:String*

findEventById Event id*:String*
id*:GId*

findFirstEventByFragmentType
findOneEventByFragmentType

Event fragmentType*:String*

…EventByFragmentTypeAndSource List fragmentType*:String*, source*:String*

…
EventByFragmentTypeAndSourceAndTimeBetwee
n

List fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*

…
EventByFragmentTypeAndSourceAndTimeBetwee
nAndType

List fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*, type*:String*

…EventByFragmentTypeAndSourceAndType List fragmentType*:String*, source*:String*,
type*:String*

Functions Page 27 of 67

Cumulocity IoT Event Language

…EventByFragmentTypeAndTimeBetween List fragmentType*:String*, from*:Date*, to*:Date*

…
EventByFragmentTypeAndTimeBetweenAndType

List fragmentType*:String*, from*:Date*, to*:Date*,
type*:String*

findFirstEventByFragmentTypeAndType
findOneEventByFragmentTypeAndType

Event fragmentType*:String*, type*:String*

…EventBySource List source*:String*

findMeasurementById Measure
ment

id*:String*
id*:GId*

findFirstMeasurementByFragmentType
findOneMeasurementByFragmentType

Measure
ment

fragmentType*:String*

…MeasurementByFragmentTypeAndSource List fragmentType*:String*, source*:String*

…
MeasurementByFragmentTypeAndSourceAndTim
eBetween

List fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*

…
MeasurementByFragmentTypeAndSourceAndTim
eBetweenAndType

List fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*, type*:String*

…
MeasurementByFragmentTypeAndSourceAndTyp
e

List fragmentType*:String*, source*:String*,
type*:String*

…MeasurementByFragmentTypeAndTimeBetween List fragmentType*:String*, from*:Date*, to*:Date*

…
MeasurementByFragmentTypeAndTimeBetweenA
ndType

List fragmentType*:String*, from*:Date*, to*:Date*,
type*:String*

findFirstMeasurementByFragmentTypeAndType
findOneMeasurementByFragmentTypeAndType

Measure
ment

fragmentType*:String*, type*:String*

…MeasurementBySource List source*:String*

findLastMeasurementByFragmentTypeAndSource
AndTimeBetween

Measure
ment

fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*

findLastMeasurementByFragmentTypeAndSource
AndTimeBetweenAndType

Measure
ment

fragmentType*:String*, source*:String*,
from*:Date*, to*:Date*, type*:String*

findLastMeasurementByFragmentTypeAndTimeB
etween

Measure
ment

fragmentType*:String*, from*:Date*, to*:Date*

findLastMeasurementByFragmentTypeAndTimeB
etweenAndType

Measure
ment

fragmentType*:String*, from*:Date*, to*:Date*,
type*:String*

Function name (with variants)
Return
type Alternative argument lists

Functions Page 28 of 67

Cumulocity IoT Event Language

findOperationById Operatio
n

id*:String*
id*:GId*

findFirstOperationByAgent
findOneOperationByAgent

Operatio
n

agentId*:String*

…OperationByAgentAndStatus List agentId*:String*, status*:String*

findFirstOperationByDevice
findOneOperationByDevice

Operatio
n

deviceId*:String*

…OperationByDeviceAndStatus List deviceId*:String*, status*:String*

…OperationByStatus List status*:String*

…OperationByCreationTimeBetween List from*:Date*, to*:Date*

findAlarmById Alarm id*:String*
id*:GId*

…AlarmBySource List sourceId*:String*

…AlarmBySourceAndStatus List sourceId*:String*, status*:String*

…AlarmBySourceAndStatusAndType List sourceId*:String*, status*:String*, type*:String*

…AlarmBySourceAndStatusAndTimeBetween List sourceId*:String*, status*:String*, from*:Date*,
to*:Date*

…AlarmBySourceAndTimeBetween List sourceId*:String*, from*:Date*, to*:Date*

findFirstAlarmByStatus
findOneAlarmByStatus

Alarm status*:String*

…AlarmByStatusAndTimeBetween List status*:String*, from*:Date*, to*:Date*

…AlarmByTimeBetween List from*:Date*, to*:Date*

Function name (with variants)
Return
type Alternative argument lists

Utility functions

access fragments

Fragments are accessible through the following helper functions:

Functions Page 29 of 67

Cumulocity IoT Event Language

Object getObject(Object event, String path[, Object defaultValue])
String getString(Object event, String path[, String defaultValue])
Number getNumber(Object event, String path[, Number defaultValue])
Boolean getBoolean(Object event, String path[, Boolean defaultValue])
Date getDate(Object event, String path[, Date defaultValue])
List getList(Object event, String path[, List defaultValue])

You can use JsonPath (without the root element $) to navigate in the object structure Example:

select
 getNumber(m, "c8y_TemperatureMeasurement.T.value")
from MeasurementCreated m;

select
 e.event as event
from EventCreated e
where getObject(e, "c8y_Position") is not null;

cast

The cast() function gives you the possibility to transform data to the correct data type if you receive it e.g. as Object.
Casting to a basic Java type:

cast(myVariable, long)

For other types you need to specify the fully-qualified class name

cast(event.managedObject.childAssets[0], com.cumulocity.model.ID)

current_timestamp

The current_timestamp() function will give you the current server time. You can easily transform it to the required Date
data type with the toDate() function to be used in the Cumulocity streams.

Example:

insert into CreateAlarm
select
 "c8y_HighTemperatureAlarm" as type,
 current_timestamp().toDate() as time,
 event.event.source as source,
 CumulocitySeverities.WARNING as severity,
 CumulocityAlarmStatuses.ACTIVE as status,
 "The device has high temperature" as text
from EventCreated event;

inMaintenanceMode

The inMaintenaceMode() function is a fast way to check if the device is currently in maintenance mode. It takes an ID
as parameter and will return a boolean value.

Example:

Functions Page 30 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/data-model#id

insert into SendEmail
select
 "receiver1@cumulocity.com,receiver2@cumulocity.com" as receiver,
 "cc@cumulocity.com" as cc,
 "bcc@cumulocity.com" as bcc,
 "reply@cumulocity.com" as replyTo,
 "Example mail" as subject,
 "This mail was sent to test the SendEmail stream in Cumulocity" as text
from EventCreated e
where not inMaintenanceMode(e.event.source);

replaceAllPlaceholders

To enrich your texts you can either use concatenation

insert into SendEmail
select
 "receiver1@cumulocity.com,receiver2@cumulocity.com" as receiver,
 "cc@cumulocity.com" as cc,
 "bcc@cumulocity.com" as bcc,
 "reply@cumulocity.com" as replyTo,
 "Example mail" as subject,
 "An event with the text " || e.event.text || " has been created." as text
from EventCreated e;

If the texts get longer and have more values that are dynamically set from the data you can use the
replaceAllPlaceholders() function. Another advantage of this function is that you can not only use the current object but
also access all information of the device that created the alarm, measurment, event.

In your text string you mark the placeholders with the JsonPath to the value (without the root element $) and surround it
by #{}. If you want to access data from the device you start the JsonPath with source.

The function gets called with the string which contains the placeholders and the object which you want to use for filling
the placeholders. The source device will then be automatically queried.

Example:

create variable string myMailText =
"The device #{source.name} with the serial number #{source.c8y_Hardware.serialNumber}
created an event with the text #{text} at #{time}. The device is located at #
{source.c8y_Address.street} in #{source.c8y_Address.city}.";

insert into SendEmail
select
 "receiver1@cumulocity.com,receiver2@cumulocity.com" as receiver,
 "cc@cumulocity.com" as cc,
 "bcc@cumulocity.com" as bcc,
 "reply@cumulocity.com" as replyTo,
 "Example mail" as subject,
 replaceAllPlaceholders(myMailText, e.event) as text
from EventCreated e;

toNumberSetParameter

The toNumberSetParameter() function helps you to configure timer patterns outside of the module. When deploying a
module with timer patterns the pattern has to be fixed to the point of deployment and cannot be changed without
redeploying the module. It is possible to configure timer patterns with variables if the variables get resolved

Functions Page 31 of 67

Cumulocity IoT Event Language

immediately on deployment. This enables you to store the timer pattern in a ManagedObject. On deployment you load it
and fill it with the timer pattern. The toNumberSetParameter() function transforms strings to the NumberSetParameter
type which is the input for timer patterns. For more information about timer patterns please check here.

Example:

create variable ManagedObject device = findManagedObjectById("12345");
create variable string minuteVal = getString(device, "config.minute");
create variable string hourVal = getString(device, "config.hour");
create variable string dayOfMonthVal = getString(device, "config.day");
create variable string monthVal = getString(device, "config.month");
create variable string dayOfWeekVal = getString(device, "config.weekday");

insert into CreateOperation
select
 "PENDING" as status,
 "12345" as deviceId,
 { "c8y_Restart", {} } as fragments
from
 pattern [every timer:at(toNumberSetParameter(minuteVal),
 toNumberSetParameter(hourVal),
 toNumberSetParameter(dayOfMonthVal),
 toNumberSetParameter(monthVal),
 toNumberSetParameter(dayOfWeekVal))];

Functions Page 32 of 67

Cumulocity IoT Event Language

Advanced use cases

Custom fragments

Cumulocity IoT APIs give you the possibility to structure your data freely. In the Cumulocity Event Language this is also
the case. Each of the output streams can be extended with custom fragments. You can add fragments by setting the
fragments field in the stream with a list of key, value pairs. The key is the full JsonPath to the value.

{
 key1, value1,
 key2, value2,
 key3, value3
} as fragments

Example 1:

insert into CreateMeasurement
select
 "12345" as source,
 "c8y_TemperatureMeasurement" as type,
 current_timestamp().toDate() as time,
 {
 "c8y_TemperatureMeasurement.T1.value", 1,
 "c8y_TemperatureMeasurement.T1.unit", "C",
 "c8y_TemperatureMeasurement.T2.value", 2,
 "c8y_TemperatureMeasurement.T2.unit", "C",
 "c8y_TemperatureMeasurement.T3.value", 3,
 "c8y_TemperatureMeasurement.T3.unit", "C",
 "c8y_TemperatureMeasurement.T4.value", 4,
 "c8y_TemperatureMeasurement.T4.unit", "C",
 "c8y_TemperatureMeasurement.T5.value", 5,
 "c8y_TemperatureMeasurement.T5.unit", "C"
 } as fragments
from EventCreated;

This will result in the following json structure:

Advanced use cases Page 33 of 67

Cumulocity IoT Event Language

{
 "type": "c8y_TemperatureMeasurement",
 "time": "...",
 "source": {
 "id": "12345"
 },
 "c8y_TemperatureMeasurement": {
 "T1": {
 "value": 1,
 "unit": "C"
 },
 "T2": {
 "value": 1,
 "unit": "C"
 },
 "T3": {
 "value": 1,
 "unit": "C"
 },
 "T4": {
 "value": 1,
 "unit": "C"
 },
 "T5": {
 "value": 1,
 "unit": "C"
 },
 }
}

Example 2:

insert into CreateManagedObject
select
 "MyCustomDevice" as name,
 "customDevice" as type,
 {
 "c8y_IsDevice", {},
 "c8y_SupportedOperations", {"c8y_Restart", "c8y_Command"},
 "c8y_Hardware.serialNumber", "mySerialNumber",
 "c8y_Hardware.model", "myDeviceModel",
 "com_cumulocity_model_Agent", {},
 "c8y_RequiredAvailability.responseInterval", 30
 } as fragments
from EventCreated e;

This will result in the following json structure:

Advanced use cases Page 34 of 67

Cumulocity IoT Event Language

{
 "name": "MyCustomDevice",
 "type": "customDevice",
 "c8y_IsDevice": {},
 "c8y_RequiredAvailability": {
 "responseInterval": 30
 },
 "c8y_SupportedOperations": [
 "c8y_Restart",
 "c8y_Command"
],
 "com_cumulocity_model_Agent": {},
 "c8y_Hardware": {
 "model": "myDeviceModel",
 "serialNumber": "mySerialNumber"
 }
}

Advanced trigger

Triggering a statement by an arriving event in some stream is not the only possibility. The following sections will cover
other ways to trigger statements and combining triggers.

Pattern

Patterns enable you to trigger by combinations or sequences of other triggers. If you have a trigger like this

from EventCreated e;

the functionality is identical with this trigger using a pattern.

from pattern [every e=EventCreated];

It is also possible to add filters in the pattern.

from pattern [every e=EventCreated(event.type = "myEventType")];

You can trigger by joining streams.

from EventCreated e unidirectional, AlarmCreated.std:lastevent() a
where e.event.source = a.alarm.source;

This will trigger on every EventCreated (defined through the keyword unidirectional) and add the latest AlarmCreated if it
is from the same device.

Note: it will not add the latest AlarmCreated of the device but the latest AlarmCreated overall if it is from the same device

You can also trigger by sequences.

Advanced use cases Page 35 of 67

Cumulocity IoT Event Language

from pattern[every (e=EventCreated -> a=AlarmCreated(alarm.source = e.event.source))];

This will trigger for every pair EventCreated followed by AlarmCreated. It will start on an arriving EventCreated and then
finally trigger on an AlarmCreated from the same device. Afterwards it is going to wait for the next EventCreated.

Timer

Instead of using streams for triggering a statement there is also the possibility to trigger by timers. You can either
trigger in a certain interval

from pattern [every timer:interval(5 minutes)];

or as a cron job.

// timer:at(minutes, hours, daysOfMonth, month, daysOfWeek, (optional) seconds)
// minutes: 0-59
// hours: 0-23
// daysOfMonth: 1-31
// month: 1-12
// daysOfWeek: 0 (Sunday) - 6 (Saturday)
// seconds: 0-59

from pattern [every timer:at(*, *, *, *, *)]; // trigger every minute
from pattern [every timer:at(*, *, *, *, *, *)]; // trigger every second
from pattern [every timer:at(*/10, *, *, *)]; // trigger every 10 minutes
from pattern [every timer:at(0, 1, *, *, [1,3,5])]; // trigger at 1am every monday, wednesday
and friday
from pattern [every timer:at(0, */2, (1-7), *, *)]; // trigger every 2 hours on every day in
the first week of every month

You can also combine timer patterns with other patterns. For example you can check if there was an event within a
certain time after another event.

from pattern [every e=EventCreated -> (timer:interval(10 minutes) and not a=AlarmCreated)];

This will trigger if there is an EventCreated and within 10 minutes there is no AlarmCreated.

Outputs

Outputs give you the possibility to not take every event on a stream into account and to directly control when a
statement should output its result. If you have a measurement that is taken every 10 seconds and you want to do
calculations with it maybe it is not necessary to calculate with all measurements but only a subset.

Advanced use cases Page 36 of 67

Cumulocity IoT Event Language

// will output the last measurement arrived every 1 minute
from MeasurementCreated e
where e.measurement.type = "c8y_TemperatureMeasurement"
output last every 1 minutes;

// will output the first of every 20 measurements arriving
from MeasurementCreated e
where e.measurement.type = "c8y_TemperatureMeasurement"
output first every 20 events;

// will output all 20 measurements after the 20th arrived
from MeasurementCreated e
where e.measurement.type = "c8y_TemperatureMeasurement"
output every 20 events;

If you need to take all measurements into account because e.g. you want to calculate the sum of your measurements
and you do not want to update it for every new measurement.

select
 sum(getNumber(e, "myCustomMeasurement.mySeries.value")),
 last(*)
from MeasurementCreated e
where e.measurement.type = "myCustomMeasurement"
output last every 50 events;

Every 50 measurements this statement will output the sum (of all measurements since deployment not just of the 50)
and the latest measurement.

Event windows

Event windows give you the possibility to batch together multiple events in a stream for further analysis. There are
mainly two ways to create windows:

1. Windows for a certain time

select avg(getNumber(e, “myCustomMeasurement.mySeries.value”)), last(*) from
MeasurementCreated.win:time(1 hours) e where e.measurement.type = “myCustomMeasurement”;

select avg(getNumber(e, “myCustomMeasurement.mySeries.value”)), last(*) from
MeasurementCreated.win:time(1 hours) e where e.measurement.type = “myCustomMeasurement” output last
every 1 hours;

The difference between the two statements is that the first one will trigger on every MeasurementCreated and then
output the average of the last hour. The second statement only triggers every hour and will only output the last average
(calculated when the last MeasurementCreated was received).

2. Windows with a certain amount of events:

select avg(getNumber(e, “myCustomMeasurement.mySeries.value”)), last(*) from
MeasurementCreated.win:length(100) e where e.measurement.type = “myCustomMeasurement”;

select avg(getNumber(e, “myCustomMeasurement.mySeries.value”)), last(*) from

Advanced use cases Page 37 of 67

Cumulocity IoT Event Language

MeasurementCreated.win:length(100) e where e.measurement.type = “myCustomMeasurement” output last
every 100 events;

Windows can also be globally declared:

create window MeasurementCreated.win:length(20) as MyMeasurementWindow;

select
 avg(getNumber(e, "myCustomMeasurement.mySeries.value")),
 last(*)
from MyMeasurementWindow e
where e.measurement.type = "myCustomMeasurement";

Declaring a window gives you also the possibility of clearing the window.

on AlarmCreated delete from MyMeasurementWindow

Creating own streams

Creating complex modules is not doable in a single statement. While Cumulocity IoT already provides certain streams it
is possible to create additional ones to control your event flow. It is not required to define a stream. If you use a
unknown stream name it will automatically be created and defined with the input you set.

insert into MyEvent
select
 e.event as e
from EventCreated e;

select e.type from MyEvent e;

If you now try to add:

insert into MyEvent
select
 e as e
from AlarmCreated e;

You will not be able to deploy the statement because the stream MyEvent has already been declared with one variable e
of type Event. This statement tries to set a value of type AlarmCreated to e.

You can also explicitly create a new stream.

create schema MyEvent(
 e Event
);

The general syntax is:

Advanced use cases Page 38 of 67

Cumulocity IoT Event Language

create schema StreamName(
 var1Name var1Type,
 var2Name var2Type,
 var3Name var3Type
);

You can use every basic Java data type, data types from the imported Java libraries, Cumulocity IoT data types (like
Event, Measurement, ManagedObject, …) and other streams.

create schema TwoMyEvents(
 firstEvent MyEvent,
 secondEvent MyEvent
);

Note: Stream names are unique and once declared (regardless if implicit or explicit) the stream is available in all your
modules

Creating own functions

If you want to make more complex calculation than e.g. sum or average you can create your own helper functions and
expressions. For writing the function you can use JavaScript as the scripting language. You can also import Java
classes into your expressions using importClass.

Examples:

Increasing the given severity (using JavaScript):

create expression CumulocitySeverities js:increaseSeverity(severity) [
 importClass (com.cumulocity.model.event.CumulocitySeverities);
 if(severity == CumulocitySeverities.WARNING) {
 CumulocitySeverities.MINOR;
 } else if(severity == CumulocitySeverities.MINOR) {
 CumulocitySeverities.MAJOR;
 } else if(severity == CumulocitySeverities.MAJOR) {
 CumulocitySeverities.CRITICAL;
 } else {
 severity
 }
];

Calculating the distance between two geo-coordinates:

Advanced use cases Page 39 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/functions#java-functions

create expression distance(lat1, lon1, lat2, lon2) [
 var R = 6371000;
 var toRad = function(arg) {
 return arg * Math.PI / 180;
 };
 var lat1Rad = toRad(lat1);
 var lat2Rad = toRad(lat2);
 var deltaLatRad = toRad(lat2-lat1);
 var deltaLonRad = toRad(lon2-lon1);

 var a = Math.sin(deltaLatRad/2) * Math.sin(deltaLatRad/2) +
 Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.sin(deltaLonRad/2) *
Math.sin(deltaLonRad/2);

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

 var d = R * c;
 d;
];

Variables

You can define variables in your modules.

create variable String myEmailText = "Hello World";
create variable List supportedOperationsList = cast({"c8y_Restart", "c8y_Relay"},
java.util.List);

You can also dynamically change variable values during runtime

create variable String latestEventType;

on EventCreated e set latestEventType = e.event.type;

Contexts

Contexts give you the possibility to handle and sort events based on defined values. If you want to create a calculation
for some measurements you usually want this to be done for all the devices having this measurement and more
importantly separated for each device.

Taking this example

Advanced use cases Page 40 of 67

Cumulocity IoT Event Language

select
 avg(getNumber(e, "myCustomMeasurement.mySeries.value")),
 last(*)
from MeasurementCreated.win:length(100) e
where e.measurement.type = "myCustomMeasurement";

It will work perfectly for a single device. But as soon as you have two devices the average calculation would be over
both devices because all measurements end up in MeasurementCreated. The statement is not aware of how to
distinguish the measurements by device. Creating a context is like telling the statement where it can find the
information by which it should separate the incoming events.

create context DeviceAwareContext
 partition by measurement.source.value from MeasurementCreated;

This context definition declares that in the stream MeasurementCreated the context key (by which we want to separate
the events) can be found at measurement.source.value which is the ID of the device.

Now we can add the context to the statement:

context DeviceAwareContext
select
 avg(getNumber(e, "myCustomMeasurement.mySeries.value")),
 last(*)
from MeasurementCreated.win:length(100) e
where e.measurement.type = "myCustomMeasurement";

Now the average will be calculated for each device separately.

The context can only be applied to statements that have an input that is declared in the context. If you have multiple
statements that need to be context aware and have different inputs you need to configure each input in the context and
where to find the context key.

create context DeviceAwareContext
 partition by
 measurement.source.value from MeasurementCreated,
 alarm.source.value from AlarmCreated,
 event.source.value from EventCreated,
 operation.deviceId.value from OperationCreated;

You can also create context keys of multiple values:

create context DeviceAwareContext
 partition by measurement.source.value and measurement.type from MeasurementCreated;

This context will not only create an own partition for each device but also for each measurement type.

Advanced use cases Page 41 of 67

Cumulocity IoT Event Language

Best practises and troubleshooting

CEP statements and Esper scripts

Symptom: Your event processing rules are disabled automatically

Cumulocity IoT monitors the memory usage and workload generated by event processing rules, as well as any errors
that are occurring while running those rules. If an event processing rule consumes too much memory or generates too
many errors, Cumulocity IoT automatically disables this rule.

Troubleshoot from having rules disabled due to memory consumption:

Make sure that your event processing rules do not keep too many events in windows. For example, if you use
“win:keepall()” and many events enter the rule, it will be disabled within a short time. Instead of using “win:keepall()”, try
using statements such as “std:lastevent()” that consumes less memory.

Troubleshoot from getting disabled due to too high amount of errors:

Monitor the amount of statements for errors. To see errors you will need to read through the details. In case of an error,
correct the statement. An example of a wrong statement: ‘insert into UpdateAlarm select “CLEARED” as status from…’ is
regarded as an error statement. An example of a corrected statement is: “insert into UpdateAlarm select “10201” as ID,
“CLEARED” as status from…”

Naming statements

The @Name annotation gives you the possibility to name your statements in the module. A name needs to be unique
within a single module. This will have a direct effect on the channels in the realtime notifications. It will also help to
debug the module in administration UI because the channel name (and therefore the statement name) is printed in the
list. If you do not name a statement it will automatically be named “statement_{number of statement}”.

Using device contexts

If you need a device context, it is usually not necessary to put every statement into context. If you use aggregation of

Best practises and troubleshooting Page 42 of 67

Cumulocity IoT Event Language

measurements most of the time you only need the context in the statement that executes the actual aggregation. It is a
useful concept to develop the module completely without the context first and add it at the end to those statements
where the context applies.

Splitting modules

If your module gets really big it might be helpful to split it into multiple modules. If you declare schematas or functions
they will be available in all modules of your tenant. A good approach can be:

Module 1: filtering incoming data and load additional data from database
Module 2: Calculation
Module 3: Creating data in database

Keep in mind that this will create dependencies within the modules (e.g. module 2 needs a schema defined in module
1). You must avoid circular dependencies.

Number formats

When interacting with measurements the values will be in BigDecimal (if you use getNumber()). When calculating with
BigDecimal there will be an error if the result is a repeating decimal. This will result into a null return from built-in
functions like avg(). There are two ways to prevent this issue:

1. If you are using built-in functions the easiest way is to cast the BigDecimal to a double value

avg(cast(getNumber(e, “c8y_TemperatureMeasurement.T.value”), double))

2. If you are calculating yourself (e.g. in a expression) make sure to round or cut the number if you want to stay with
BigDecimal.

getNumber(e, “c8y_TemperatureMeasurement.T.value”).divide(new BigDecimal(3), 5, RoundingMode.HALF_UP)

Best practises and troubleshooting Page 43 of 67

Cumulocity IoT Event Language

Examples

Calculating an hourly median of measurements

We are assuming the input data looks like this:

{
 "c8y_TemperatureMeasurement": {
 "T": {
 "value": ...,
 "unit": "C"
 }
 },
 "time":"...",
 "source": {
 "id":"..."
 },
 "type": "c8y_TemperatureMeasurement"
}

To create the median we need the following parts in the module:

A context to separate the measurements correctly per device
A time window over one hour
An output that returns only the last average calculation every hour
Everything created as a new measurement

Module:

create context HourlyAvgMeasurementDeviceContext
 partition measurement.source.value from MeasurementCreated;

@Name("Creating_hourly_measurement")
context HourlyAvgMeasurementDeviceContext
insert into CreateMeasurement
select
 m.measurement.source as source,
 current_timestamp().toDate() as time,
 "c8y_AverageTemperatureMeasurement" as type,
 {
 "c8y_AverageTemperatureMeasurement.T.value", avg(cast(getNumber(m,
"c8y_TemperatureMeasurement.T.value"), double)),
 "c8y_AverageTemperatureMeasurement.T.unit", getString(m,
"c8y_TemperatureMeasurement.T.unit")
 } as fragments
from MeasurementCreated.win:time(1 hours) m
where getObject(m, "c8y_TemperatureMeasurement") is not null
output last every 1 hours;

Examples Page 44 of 67

Cumulocity IoT Event Language

Creating alarm if the operation was not executed

Operations usually run to a fixed sequence when handled by the device.

PENDING (after creation)
EXECUTING (once device received the operation and starts the handling)
SUCCESSFUL or FAILED (depending on the execution result)

An operation that does not reach SUCCESSFUL or FAILED within a certain time usually indicates an issue (like device
lost connection or device got stuck while handling). Even if the operation was not handled successfully the device
should update the operation as FAILED. For this example we will use 10 minutes as a acceptable duration for operation
handling. We will check for the following sequence:

OperationCreated
OperationUpdated for the same operation within 10 minutes that sets the status to either SUCCESSFUL or FAILED

If the second part does not appear we will create a new alarm:

@Name("handle_not_finished_operation")
insert into CreateAlarm
select
 o.operation.deviceId as source,
 CumulocitySeverities.MAJOR as severity,
 CumulocityAlarmStatuses.ACTIVE as status,
 "c8y_OperationNotFinishedAlarm" as type,
 current_timestamp().toDate() as time,
 replaceAllPlaceholders("The device has not finished the operation #{id} within 10
minutes", o.operation) as text
from pattern [
 every o = OperationCreated
 -> (timer:interval(10 minutes)
 and not OperationUpdated(
 operation.id.value = o.operation.id.value
 and (operation.status in (OperationStatus.SUCCESSFUL, OperationStatus.FAILED))
))
];

Creating alarms from bit measurements

Devices often keep alarm statuses in registers and can not interpret the meaning of alarms. In this example, we assume
that a device just sends the entire register as a binary value in a measurement. A rule must identify the bits and create
the respective alarm.

We create three expressions to resolve alarm text, type, and severity for each of the bits.

Examples Page 45 of 67

Cumulocity IoT Event Language

create expression String getFaultRegisterAlarmType(position) [
 switch (position) {
 case 0:
 "c8y_HighTemperatureAlarm";
 break;
 case 1:
 "c8y_ProcessingAlarm";
 break;
 case 2:
 "c8y_DoorOpenAlarm";
 break;
 case 3:
 "c8y_SystemFailureAlarm";
 break;
 default:
 "c8y_FaultRegister" + position + "Alarm";
 break;
 };
];

create expression CumulocitySeverities getFaultRegisterAlarmSeverity(position) [
 importClass(com.cumulocity.model.event.CumulocitySeverities);
 switch (position) {
 case 0:
 CumulocitySeverities.MAJOR;
 break;
 case 1:
 CumulocitySeverities.WARNING;
 break;
 case 2:
 CumulocitySeverities.MINOR;
 break;
 case 3:
 CumulocitySeverities.CRITICAL;
 break;
 default:
 CumulocitySeverities.MAJOR;
 break;
 };
];

create expression String getFaultRegisterAlarmText(position)[
 switch(position) {
 case 0:
 "The machine temperature reached a critical status";
 break;
 case 1:
 "There was an error trying to process data";
 break;
 case 2:
 "Door was opened";
 break;
 case 3:
 "There was a critical system failure";
 break;
 default:
 "An undefined alarm was reported on position " || position || " in the binary fault
register";
 break;
 };
];

To analyze the binary measurement value we will interpret it as a string value and loop through each character. The
getActiveBits() function will do that and return a list of the bit positions at where the measurement had a “1”. It will not

Examples Page 46 of 67

Cumulocity IoT Event Language

return it as a List but instead as a List where the map structure matches the scheme BitPosition so we can handle it as
if it is a stream. This is used as an option to join the stream and trigger an alarm by individual measurement values
listed.

create schema BitPosition(
 position int
);

create schema MeasurementWithBinaryFaultRegister(
 measurement Measurement,
 faultRegister String
);

create expression Collection getActiveBits(value) [
 importPackage(java.util);
 var bitOnNumbers = new ArrayList();
 var size = value.length;
 for(var no = 0; no < size; no++) {
 if(value.charAt(no) == "1") {
 bitOnNumbers.add(Collections.singletonMap('position', size - no - 1));
 }
 }
 bitOnNumbers;
];

@Name("extract_fault_register")
insert into MeasurementWithBinaryFaultRegister
select
 m.measurement as measurement,
 getString(m, "c8y_BinaryFaultRegister.errors.value") as faultRegister
from MeasurementCreated m
where getObject(m, "c8y_BinaryFaultRegister") is not null;

@Name("creating_alarm")
insert into CreateAlarm
select
 m.measurement.source as source,
 getFaultRegisterAlarmSeverity(bit.position) as severity,
 CumulocityAlarmStatuses.ACTIVE as status,
 m.measurement.time as time,
 getFaultRegisterAlarmType(bit.position) as type,
 getFaultRegisterAlarmText(bit.position) as text
from
 MeasurementWithBinaryFaultRegister m unidirectional,
 MeasurementWithBinaryFaultRegister[getActiveBits(faultRegister)@type(BitPosition)] as
bit;

Creating a measurement like this

{
 "c8y_BinaryFaultRegister": {
 "errors": {
 "value": 10110
 }
 },
 "time":"...",
 "source": {
 "id":"..."
 },
 "type": "c8y_BinaryFaultRegister"
}

will trigger the last statement three times.

Examples Page 47 of 67

Cumulocity IoT Event Language

measurement and bit position 1
measurement and bit position 2
measurement and bit position 4

and therefore create three alarms.

Consumption measurements

Assuming we have a sensor which measures the current fill level of something and sends the values in a regular basis
to Cumulocity IoT we can easily create additional consumption values. Calculating the absolute difference between two
measurements can be useful but it will only give you a clear view if the measurements are send always in the same
interval. Therefore we will put the absolute difference in relation to the time difference and calculate as a per hour
consumption.

We will compare the value and time difference of two adjacent measurements for a device (we will need a context for
that).

Examples Page 48 of 67

Cumulocity IoT Event Language

create schema FillLevelMeasurement(
 measurement Measurement,
 value double
);

create schema AdjacentFillLevelMeasurements(
 firstValue double,
 lastValue double,
 firstTime Date,
 lastTime Date,
 source String
);

create context ConsumptionMeasurementDeviceContext
 partition measurement.source.value from FillLevelMeasurement;

create expression double calculateConsumption(firstValue, lastValue, firstTime, lastTime) [
 if (lastTime == firstTime) {
 0;
 } else {
 ((firstValue - lastValue) * 3600000) / (lastTime - firstTime);
 }
];

@Name("filter_fill_level_measurements")
insert into FillLevelMeasurement
select
 m.measurement as measurement,
 cast(getNumber(m, "c8y_WaterTankFillLevel.level.value"), double) as value
from MeasurementCreated m
where getObject(m, "c8y_WaterTankFillLevel") is not null;

@Name("combine_two_latest_measurements")
context ConsumptionMeasurementDeviceContext
insert into AdjacentFillLevelMeasurements
select
 first(m.value) as firstValue,
 first(m.measurement.time) as firstTime,
 last(m.value) as lastValue,
 last(m.measurement.time) as lastTime,
 context.key1 as source
from FillLevelMeasurement.win:length(2) m;

@Name("create_consumption_measurement")
insert into CreateMeasurement
select
 m.lastTime as time,
 m.source as source,
 "c8y_HourlyWaterConsumption" as type,
 {
 "c8y_HourlyWaterConsumption.consumption.value", calculateConsumption(m.firstValue,
m.lastValue, m.firstTime.toMillisec(), m.lastTime.toMillisec()),
 "c8y_HourlyWaterConsumption.consumption.unit", "l/h"
 } as fragments
from AdjacentFillLevelMeasurements m;

Using Zementis analytic models
Examples Page 49 of 67

Cumulocity IoT Event Language

The CEP rule/module below shows how to use Zementis analytic models inside Cumulocity IoT.

We are assuming the input data looks like this:

{
 "c8y_SteamMeasurement": {
 "Temperature": {
 "value": ...,
 "unit": "C"
 }
 },
{
 "c8y_TemperatureMeasurement": {
 "Pressure": {
 "value": ...,
 "unit": "bar"
 }
 },
{
 "c8y_TemperatureMeasurement": {
 "Steamoutput": {
 "value": ...,
 "unit": "%"
 }
 },
 "time":"...",
 "source": {
 "id":"..."
 },
 "type": "c8y_TemperatureMeasurement"
}

First, a predictive model is created and uploaded via Zementis console. Assume, the model becomes available for data
scoring on https://myadapa.zementis.com:443/adapars/apply/model_name endpoint.

CEP module:

Examples Page 50 of 67

Cumulocity IoT Event Language

http://www2.softwareag.com/corporate/products/apama_webmethods/zementis/default.aspx?
https://myadapa.zementis.com

create constant variable string model_name = "model_name";
create constant variable string model_url =
"https://myadapa.zementis.com:443/adapars/apply/";
create constant variable string auth = "Basic ...";
create constant variable string source_device = "12345";

create expression string js:getLabel(stringObj)[
var zemOutputs = JSON.parse(stringObj).outputs;
output = zemOutputs.pop().Predicted_label;
];

@Name("inputData")
insert into inputDataAll
select
 m.source as source,
 getNumber(m, "c8y_SteamMeasurement.Temperature.value") as `steam.temperature`,
 getNumber(m, "c8y_SteamMeasurement.Pressure.value") as `steam.pressure`,
 getNumber(m, "c8y_SteamMeasurement.Steamoutput.value") as `steam.steamoutput`
from MeasurementCreated m
where
 measurement.source.value = source_device;

@Name("requestZementis")
insert into SendRequest
select
 "GET" as method,
 model_url || model_name || "?record=" || toJSON(m.*) as url,
 auth as authorization,
 "application/json" as contentType,
 m.source as source
from inputDataAll m;

@Name("responseZementis")
insert into CreateEvent
select
 "response_received_" || getString(response, "status") as type,
 getLabel(response.body) as text,
 response.creationTime as dateTime,
 getString(response, "source.value") as source
from ResponseReceived response
where
 getString(response, "source.value") = source_device;

@Name("generateAlarm")
insert into CreateAlarm
select
 response.creationTime as dateTime,
 getString(response, "source.value") as source,
 "cepFailureAlarm" as type,
 "Zementis Test Failure" as text,
 "ACTIVE" as status,
 "MAJOR" as severity
from ResponseReceived response
where
 getString(response, "source.value") = source_device
 and getLabel(response.body) = "0";

The Cumulocity IoT CEP module works as follows:

The data from a specific device is filtered. The measurement values that should be passed for analysis are
selected.
In order to apply the analytic model, an outbound HTTP request is performed to the above Zementis endpoint.
The measurement values that need to be analyzed are passed in request URL parameters.
Depending on the score returned from the model, an alarm is raised.

Examples Page 51 of 67

Cumulocity IoT Event Language

Examples Page 52 of 67

Cumulocity IoT Event Language

Study: Circular geofence alarms

This section will give an in-depth example how you can create more complex rules. It will use multiple
of the features explained before in the other guide sections.

If you are just starting with the Cumulocity Event Language please take a look at these examples.

Prerequisites

Goal

We want our tracking devices that are continuously sending location events to automatically generate alarms if they
move outside a geofence. This geofence will be a circle and should be configurable for each device separately. The
alarm will be created at the moment the device moves outside the geofence. While it is moving outside it should not
create new alarms because the first one will keep active. As soon as the device moves back into the geofence the alarm
will be cleared.

Data model

Location event structure (the part we need):

{
 "id": "...",
 "source": {
 "id": "...",
 },
 "text": "...",
 "time": "...",
 "type": "...",
 "c8y_Position": {
 "alt": ...,
 "lng": ...,
 "lat": ...
 }
}

How do we store the geofence configuration in the device (the radius will be configured in meters):

Study: Circular geofence alarms Page 53 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/event-language/examples

{
 "c8y_Geofence": {
 "lat": ...,
 "lng": ...,
 "radius": ...
 }
}

Additionally we want to enable/disable the geofence alarms for each device without removing the configuration entirely.
We will do that by adding/removing “c8y_Geofence” to c8y_SupportedOperations in the device:

{
 "c8y_SupportedOperations": [..., "c8y_Geofence", ...]
}

Calculation

The device is outside of the geofence if the distance between the current position and the center is bigger than the
configured radius of the geofence. What we need is a function that can calculate the difference between to geo-
coordinates:

create expression distance(lat1, lon1, lat2, lon2) [
 var R = 6371000;
 var toRad = function(arg) {
 return arg * Math.PI / 180;
 };
 var lat1Rad = toRad(lat1);
 var lat2Rad = toRad(lat2);
 var deltaLatRad = toRad(lat2-lat1);
 var deltaLonRad = toRad(lon2-lon1);

 var a = Math.sin(deltaLatRad/2) * Math.sin(deltaLatRad/2) +
 Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.sin(deltaLonRad/2) *
Math.sin(deltaLonRad/2);

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

 var d = R * c;
 d;
];

The above function will return the distance in meters.

Step 1: Filtering the input

The main input for this module will be events. To discard non- matching events as early as possible we will create a
filter in one statement that only matching events will pass. These will be put to a new stream.

Study: Circular geofence alarms Page 54 of 67

Cumulocity IoT Event Language

create schema LocationEvent(
 event Event
);

@Name('Location_event_filter')
insert into LocationEvent
select
 e.event as event
from EventCreated e
where getObject(e, "c8y_Position") is not null;

We do not need the additional information of EventCreated and just take the payload (the event) to the next stream.

Step 2: Collecting necessary data

In the next step we need the configuration of the geofence for the calculation and grab it. Together with the event we
will forward it into the next stream.

create schema LocationEventAndDevice (
 event Event,
 device ManagedObject
);

@Name('fetch_event_device')
insert into LocationEventAndDevice
select
 e.event as event,
 findManagedObjectById(event.source.value) as device
from LocationEvent e;

Step 3: Checking if the device supports c8y_Geofence

With the device available we will now check if there is a geofence configured for the device and if it is activated
(contains “c8y_Geofence” in c8y_SupportedOperations). To check the c8y_SupportedOperations array we will extract it
from the device and use the anyOf() function. This function will loop through all elements and return true if the
expression returns true for an element. For the configuration we will just check if the device contains the fragment
“c8y_Geofence”

Study: Circular geofence alarms Page 55 of 67

Cumulocity IoT Event Language

create schema LocationEventWithGeofenceConfig (
 event Event,
 eventLat Number,
 eventLng Number,
 centerLat Number,
 centerLng Number,
 maxDistance Number
);

@Name('parse_event_and_device_fragments')
insert into LocationEventWithGeofenceConfig
select
 c.event as event,
 getNumber(e.event, "c8y_Position.lat") as eventLat,
 getNumber(e.event, "c8y_Position.lng") as eventLng,
 getNumber(e.device, "c8y_Geofence.lat") as centerLat,
 getNumber(e.device, "c8y_Geofence.lng") as centerLng,
 getNumber(e.device, "c8y_Geofence.radius") as maxDistance
from LocationEventAndDevice e
where
 getList(e.device, "c8y_SupportedOperations", new ArrayList()).anyOf(el => el =
"c8y_Geofence") = true
 and getObject(e.device, "c8y_Geofence") is not null;

Step 4: Creating the trigger

As mentioned earlier the device is outside of the fence if the distance between the current device position and the
geofence center is bigger than the configured geofence radius. To trigger the alarm we need 2 events so we can check
if within these two events the device entered or left the geofence.

In the first step we calculate the distance with the function mentioned earlier:

create schema LocationEventWithDistance (
 event Event,
 maxDistance Number,
 distance Number
);

@Name('calculate_current_distance')
insert into LocationEventWithDistance
select
 e.event as event,
 e.maxDistance as maxDistance,
 cast(distance(centerLat, centerLng, eventLat, eventLng), java.lang.Number) as distance
from LocationEventWithGeofenceConfig e;

Now we create a window which holds the last two events

Study: Circular geofence alarms Page 56 of 67

Cumulocity IoT Event Language

create schema LocationEventWithDistancePair (
 firstPos LocationEventWithDistance,
 secondPos LocationEventWithDistance
);

@Name('last_two_positions')
insert into LocationEventWithDistancePair
select
 first(*) as firstPos,
 last(*) as secondPos
from LocationEventWithDistance.win:length(2);

The stream LocationEventWithDistancePair now holds all data for checking if we should create the alarm or not.

Step 5: Creating the alarm

To create the alarm we now need two events where the first one has a distance smaller than the radius and the second
one has a distance bigger than the radius. This would mean that the device just left the geofence.

@Name('create_geofence_alarm')
insert into CreateAlarm
select
 pair.firstPos.event.source as source,
 "ACTIVE" as status,
 current_timestamp().toDate() as time,
 "c8y_GeofenceAlarm" as type,
 "MAJOR" as severity,
 "Device moved out of circular geofence" as text
from LocationEventWithDistancePair pair
where pair.firstPos.distance.doubleValue() <= pair.firstPos.maxDistance.doubleValue()
and pair.secondPos.distance.doubleValue() > pair.secondPos.maxDistance.doubleValue();

Step 6: Clearing the alarm

To clear the alarm we just need to switch the condition at the bottom and additionally grab the currently active alarm to
get its ID. We do not need to care about whether there is an existing alarm at this point. If there is none this statement
will not evaluate successfully because the function would return null.

Study: Circular geofence alarms Page 57 of 67

Cumulocity IoT Event Language

@Name('clear_geofence_alarm')
insert into UpdateAlarm
select
 findFirstAlarmBySourceAndStatusAndType(pair.firstPos.event.source.value, "ACTIVE",
"c8y_GeofenceAlarm").getId().getValue() as id,
 "Device moved back into circular geofence" as text,
 "CLEARED" as status
from LocationEventWithDistancePair as pair
where pair.firstPos.distance.doubleValue() > pair.firstPos.maxDistance.doubleValue()
and pair.secondPos.distance.doubleValue() <= pair.secondPos.maxDistance.doubleValue();

Step 7: Creating a device context

Our rule is already working now but there is one issue left: where to send the location event. If a device A sends a
location event which is inside its geofence and the following event is from a device B which is outside the geofence it
would create an alarm. The alarm would be generated for device A because when creating the alarm we regard the
source of the first arriving event as source for the alarm creation. We need to configure that the window which holds the
latest two events should only hold events of the same device. If there is an event from another device a new window
should be created so there is one window for each device.

This can be achieved with a context. We only need the context at the point where we create the window. The partition
for the context should be the device id so that the engine automatically creates a separate context partition for every
device.

create context GeofenceDeviceContext
 partition by event.source.value from LocationEventWithDistance;

Now we can add the context to the statement where we create the window. A context can only be applied to statements
where the input of the statement is configured in the context. Otherwise the engine would not know which value to take
for creating context partitions.

@Name('last_two_positions')
context GeofenceDeviceContext
insert into LocationEventWithDistancePair
select
 first(*) as firstPos,
 last(*) as secondPos
from LocationEventWithDistance.win:length(2);

Putting everything together

We can now combine all the parts into one module. The order of the statements does not matter. The only exception is
that if you use custom models (like schemas, functions, contexts, variables, …) you need to declare them before using

Study: Circular geofence alarms Page 58 of 67

Cumulocity IoT Event Language

them.

create expression distance(lat1, lon1, lat2, lon2) [
 var R = 6371000;
 var toRad = function(arg) {
 return arg * Math.PI / 180;
 };
 var lat1Rad = toRad(lat1);
 var lat2Rad = toRad(lat2);
 var deltaLatRad = toRad(lat2-lat1);
 var deltaLonRad = toRad(lon2-lon1);

 var a = Math.sin(deltaLatRad/2) * Math.sin(deltaLatRad/2) +
 Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.sin(deltaLonRad/2) *
Math.sin(deltaLonRad/2);

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

 var d = R * c;
 d;
];

create schema LocationEvent(
 event Event
);

create schema LocationEventAndDevice (
 event Event,
 device ManagedObject
);

create schema LocationEventWithGeofenceConfig (
 event Event,
 eventLat Number,
 eventLng Number,
 centerLat Number,
 centerLng Number,
 maxDistance Number
);

create schema LocationEventWithDistance (
 event Event,
 maxDistance Number,
 distance Number
);

create schema LocationEventWithDistancePair (
 firstPos LocationEventWithDistance,
 secondPos LocationEventWithDistance
);

create context GeofenceDeviceContext
 partition by event.source.value from LocationEventWithDistance;

@Name('Location_event_filter')
insert into LocationEvent
select
 e.event as event
from EventCreated e
where getObject(e, "c8y_Position") is not null;

@Name('fetch_event_device')
insert into LocationEventAndDevice
select
 e.event as event,

Study: Circular geofence alarms Page 59 of 67

Cumulocity IoT Event Language

 findManagedObjectById(event.source.value) as device
from LocationEvent e;

@Name('parse_event_and_device_fragments')
insert into LocationEventWithGeofenceConfig
select
 c.event as event,
 getNumber(e.event, "c8y_Position.lat") as eventLat,
 getNumber(e.event, "c8y_Position.lng") as eventLng,
 getNumber(e.device, "c8y_Geofence.lat") as centerLat,
 getNumber(e.device, "c8y_Geofence.lng") as centerLng,
 getNumber(e.device, "c8y_Geofence.radius") as maxDistance
from LocationEventAndDevice e
where
 getList(e.device, "c8y_SupportedOperations", new ArrayList()).anyOf(el => el =
"c8y_Geofence") = true
 and getObject(e.device, "c8y_Geofence") is not null;

@Name('calculate_current_distance')
insert into LocationEventWithDistance
select
 e.event as event,
 e.maxDistance as maxDistance,
 cast(distance(centerLat, centerLng, eventLat, eventLng), java.lang.Number) as distance
from LocationEventWithGeofenceConfig e;

@Name('last_two_positions')
context GeofenceDeviceContext
insert into LocationEventWithDistancePair
select
 first(*) as firstPos,
 last(*) as secondPos
from LocationEventWithDistance.win:length(2);

@Name('create_geofence_alarm')
insert into CreateAlarm
select
 pair.firstPos.event.source as source,
 "ACTIVE" as status,
 current_timestamp().toDate() as time,
 "c8y_GeofenceAlarm" as type,
 "MAJOR" as severity,
 "Device moved out of circular geofence" as text
from LocationEventWithDistancePair pair
where pair.firstPos.distance.doubleValue() <= pair.firstPos.maxDistance.doubleValue()
and pair.secondPos.distance.doubleValue() > pair.secondPos.maxDistance.doubleValue();

@Name('clear_geofence_alarm')
insert into UpdateAlarm
select
 findFirstAlarmBySourceAndStatusAndType(pair.firstPos.event.source.value, "ACTIVE",
"c8y_GeofenceAlarm").getId().getValue() as id,
 "Device moved back into circular geofence" as text,
 "CLEARED" as status
from LocationEventWithDistancePair as pair
where pair.firstPos.distance.doubleValue() > pair.firstPos.maxDistance.doubleValue()
and pair.secondPos.distance.doubleValue() <= pair.secondPos.maxDistance.doubleValue();

Study: Circular geofence alarms Page 60 of 67

Cumulocity IoT Event Language

API reference: Real-time statements

Info: This section has formerly been part of the Reference guide but moved here as it only applies to the
deprecated Esper CEP engine.

Overview

The API below is not yet published in “/platform” but can be reached using the URL “/cep”.

The real-time statements interface consists of five parts:

The cep API resource returns a URI to a module collection.
The module collection resource retrieves modules and enables creating new modules.
The module resource represents an individual module that can be queried, modified, deployed or undeployed.

Note that for all PUT/POST requests accept header should be provided, otherwise an empty response body will
be returned.

Module API

CepApi [application/vnd.com.nsn.cumulocity.cepApi+json]

Name Type Occurs Description

self URL 1 Link to this resource.

modules ModuleCollection 1 Collection of all modules.

GET the CepApi resource

API reference: Real-time statements Page 61 of 67

Cumulocity IoT Event Language

http://localhost:1313/guides/reference/

Response body: CepApi

Required role: ROLE_CEP_MANAGEMENT_READ

Example request: Retrieve the CepApi resource collection

GET /cep
Host: ...
Authorization: Basic ...

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.cepapi+json;ver=...
Content-Length: ...
{
 "self":"<<CepAPI URL>>",
 "modules":{
 "self":"<<ModuleCollection URL>>"
 }
}

Module collection

ModuleCollection
[application/vnd.com.nsn.cumulocity.cepModuleCollection+json]

Name Type Occurs Description

self URI 1 Link to this resource.

modules Collection 0..n List of modules, see below.

statistics PagingStatistics 1 Information about paging statistics.

prev URI 0..1 Link to a potential previous page of modules.

next URI 0..1 Link to a potential next page of modules.

GET a module collection

Response body: ModuleCollection

Required role: ROLE_CEP_MANAGEMENT_READ

Example request: Get collection of all modules

API reference: Real-time statements Page 62 of 67

Cumulocity IoT Event Language

GET /cep/modules
Host: ...
Authorization: Basic ...

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.cepmodulecollection+json;ver=...
Content-Length: ...
{
 "id":"1",
 "self":"CURRENT URL",
 "name":"CepModule 1",
 "application":{
 "application":{
 "id":"3",
 "key":null,
 "name":"energyapp",
 "self":"<<this module application URL>>"
 },
 "self":"<<this module application reference URL>>"
 },
 "lastModified":"2012-01-10T17:15:24+01:00",
 "self": "<<URL to this module>>"
}

POST - Create a new Module with statements

Request body: module file Response body: Module (if “Accept” header is provided)
Required role: ROLE_CEP_MANAGEMENT_ADMIN.

Example request:

POST /cep/modules
Host: ...
Authorization: Basic ...
Content-Length: ...
Content-Type: multipart/form-data

Note: “POST /cep/modules” is a multipart message.

Example file:

module testmodule;
@Name('test1')select * from EventCreated.win:time(1 hour)

Annotation @Name can be skipped - in this case Cumulocity IoT platform will assign default name to the statement.

Example response:

API reference: Real-time statements Page 63 of 67

Cumulocity IoT Event Language

HTTP/1.1 201 Created
Content-Type: application/vnd.com.nsn.cumulocity.cepmodule+json;ver=...
{
 "id":"3",
 "lastModified":"2013-06-27T15:37:51.091+02:00",
 "name":"management",
 "self":"http:\/\/localhost:8181\/cep\/modules\/3",
 "status":"DEPLOYED"
}

The “id” and “lastModified” of the new module are generated by the server. Response contains also status of module
deployment operation.

Module name is considered to be also application name.

Module

Module [application/vnd.com.nsn.cumulocity.cepModule+json]

Name Type Occurs Description PUT/POST

id Strin
g

1 Uniquely identifies a module. No

self URI 1 Link to this resource. No

lastModifi
ed

Strin
g

1 Time when module was created or modified. No

name Strin
g

1 The module name. POST: Mandatory
PUT: Optional

status Strin
g

1 The module status: DEPLOYED, NOT_DEPLOYED
(default).

POST: No PUT: Optional

GET Module

Response body: Module

Required role: ROLE_CEP_MANAGEMENT_READ

Example response:

API reference: Real-time statements Page 64 of 67

Cumulocity IoT Event Language

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.cepmodule+json;ver=...
Content-Length: ...
{
 "id":"1",
 "lastModified":"2013-04-08T14:35:29.879+02:00",
 "name":"the_module",
 "self":"<<URL of cepModule>>",
 "status":"NOT_DEPLOYED"
}

GET Module file with statements

Response body: text/plain

Required role: ROLE_CEP_MANAGEMENT_READ

Example response:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: ...

@Name('test1')select * from EventCreated.win:time(1 hour)@Name('test2')select id, count(*)
from MyOffOnStream.win:time(1 hour) group by id;

Warning: if given statement has default name assigned by the Cumulocity IoT platform, annotation @Name will not
appear.

Update Module

Request body: Module

Response body: Module (only if “Accept” header is provided)

Required : ROLE_CEP_MANAGEMENT_ADMIN

Example Request:

PUT /cep/modules/<<moduleId>>
Host: ...
Authorization: Basic ...
Content-Type: application/vnd.com.nsn.cumulocity.cepmodule+json;ver=...
{
 "name" : "the_module",
 "status" : "DEPLOYED"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.cepmodule+json;ver=...

Update module file - Modify a Module with statements
API reference: Real-time statements Page 65 of 67

Cumulocity IoT Event Language

Request body: module file Response body: Module (if “Accept” header is provided)
Required role: ROLE_CEP_MANAGEMENT_ADMIN.

Example request:

PUT /cep/modules/<<moduleId>>
Host: ...
Authorization: Basic ...
Content-Length: ...
Content-Type: text/plain

Example file:

module testmodule;
@Name('test1')select * from EventCreated.win:time(1 hour)@Name('test2')select id, count(*)
from MyOffOnStream.win:time(1 hour) group by id;

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.com.nsn.cumulocity.cepmodule+json;ver=...
{
 "id":"3",
 "lastModified":"2013-06-27T15:37:51.091+02:00",
 "name":"management",
 "self":"http:\/\/localhost:8181\/cep\/modules\/3",
 "status":"DEPLOYED"
}

During module modification old module is deleted and undeployed and new module is created and deployed, therefore
module id changes.

DELETE a module

Request Body: N/A. Required : ROLE_CEP_MANAGEMENT_ADMIN

Example Request: Delete a module

DELETE /cep/modules/<<moduleId>>
 Host: [hostname]
 Authorization: Basic xxxxxxxxxxxxxxxxxxx

Example Response:

HTTP/1.1 204 NO CONTENT

Notifications

The real-time notifications allow for receiving almost immediately outputs from statements. They are available on URL

API reference: Real-time statements Page 66 of 67

Cumulocity IoT Event Language

"/cep/notifications", the usage is described in a separate document.

Required role: ROLE_NOTIFICATION_READ

The subscription channel name format

The subscription channel contains the name of the module in which the real-time statement is defined and the name of
the real-time statement itself. It has the following structure:

/<<moduleName>>/<<statementName>>

For example, to subscribe on notifications from a statement “overHeatAlarms” in the module “alarms”, the subscription
channel should be the following string:

/alarms/overHeatAlarms

API reference: Real-time statements Page 67 of 67

Cumulocity IoT Event Language

https://cumulocity.com/api/10.11.0/#tag/Real-time-notification-API

	Table of Contents
	Introduction
	Overview
	CEP application variants

	Using Cumulocity Event Language (CEL)
	How can I create derived data from CEL?
	How can I control devices from CEL?
	How can I query data from CEL?

	Event streams
	Predefined streams
	Creating events in a stream
	Listening to events in a stream

	Conditions
	Example
	Troubleshooting

	Data model
	Input streams
	General structure
	ManagedObject
	Event
	Measurement
	Operation
	Alarm
	Response received

	Output streams
	General structure
	ManagedObjects
	Events
	Measurements
	Operations
	Alarms

	Special streams
	SendMail
	SendSms
	SendPush
	SendRequest
	SendExport

	Additional data models
	ID
	OperationStatus
	Severity
	AlarmStatus

	Functions
	Java functions
	Database functions
	Utility functions
	access fragments
	cast
	current_timestamp
	inMaintenanceMode
	replaceAllPlaceholders
	toNumberSetParameter

	Advanced use cases
	Custom fragments
	Advanced trigger
	Pattern
	Timer
	Outputs

	Event windows
	Creating own streams
	Creating own functions
	Variables
	Contexts

	Best practises and troubleshooting
	CEP statements and Esper scripts
	Naming statements
	Using device contexts
	Splitting modules
	Number formats

	Examples
	Calculating an hourly median of measurements
	Creating alarm if the operation was not executed
	Creating alarms from bit measurements
	Consumption measurements
	Using Zementis analytic models

	Study: Circular geofence alarms
	Prerequisites
	Goal
	Data model
	Calculation

	Step 1: Filtering the input
	Step 2: Collecting necessary data
	Step 3: Checking if the device supports c8y_Geofence
	Step 4: Creating the trigger
	Step 5: Creating the alarm
	Step 6: Clearing the alarm
	Step 7: Creating a device context
	Putting everything together

	API reference: Real-time statements
	Overview
	Module API
	CepApi [application/vnd.com.nsn.cumulocity.cepApi+json]
	GET the CepApi resource

	Module collection
	ModuleCollection [application/vnd.com.nsn.cumulocity.cepModuleCollection+json]
	GET a module collection
	POST - Create a new Module with statements

	Module
	Module [application/vnd.com.nsn.cumulocity.cepModule+json]
	GET Module
	GET Module file with statements
	Update Module
	Update module file - Modify a Module with statements
	DELETE a module

	Notifications
	The subscription channel name format

